You are here: Home / Rare Disease Information / Rare Disease Database

Search Rare Diseases

Enter a disease name or synonym to search NORD's database of reports.

0-9 - A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

Congenital Hyperinsulinism


You are reading a NORD Rare Disease Report Abstract. NORD’s full collection of reports on over 1200 rare diseases is available to subscribers (click here for details). We are now also offering two full rare disease reports per day to visitors on our Web site.

NORD is very grateful to Julie Raskin, Executive Director, Congenital Hyperinsulinism International, Diva De Leon, MD, Assistant Professor of Pediatrics and Pediatric Endocrinologist, Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Susan A. Becker, Nurse Coordinator, RN, BSN, Children's Hospital of Philadelphia, and Paul Thornton, MD, Medical Director, Cook Children’s Endocrine and Diabetes Program, for the preparation of this report.

Synonyms of Congenital Hyperinsulinism

  • CHI
  • familial hyperinsulinism
  • HI
  • islet cell dysregulation syndrome
  • nesidioblastosis
  • persistent hyperinsulinemic hypoglycemia of infancy (PHHI)

Disorder Subdivisions

  • diffuse KATP HI
  • exercise induced HI
  • focal KATP HI
  • GDH HI or HI/HA
  • GK HI
  • HNF4A HI

General Discussion

Congenital hyperinsulinism (HI) is the most frequent cause of severe, persistent hypoglycemia in newborn babies and children. In most countries it occurs in approximately 1/25,000 to 1/50,000 births. About 60% of babies with HI are diagnosed during the first month of life. An additional 30% will be diagnosed later in the first year and the remainder after that. With early treatment and aggressive prevention of hypoglycemia, brain damage can be prevented. However, brain damage can occur in children with HI if the condition is not recognized or if treatment is ineffective in the prevention of hypoglycemia.

Insulin is the most important hormone for controlling the concentration of glucose in the blood. As food is eaten, blood glucose rises and the pancreas secretes insulin to keep blood glucose in the normal range. Insulin acts by driving glucose into the cells of the body. This action of insulin maintains blood glucose levels and stores glucose as glycogen in the liver. Once feeding is completed and glucose levels fall, insulin secretion is turned off, allowing the stores of glucose in glycogen to be released into the bloodstream to keep blood glucose normal. In addition, with the switching off of insulin secretion, protein and fat stores become accessible and can be used instead of glucose as sources of fuel. In this manner, whether one eats or is fasting blood glucose levels remain in the normal range and the body has access to energy at all times.

This close regulation of blood glucose and insulin secretion does not occur normally in people who have HI. The beta cells in the pancreas, which are responsible for insulin secretion, are blind to the blood glucose level and secrete insulin regardless of the blood glucose concentration. As a result, the baby or child with HI can develop hypoglycemia at any time but particularly when fasting. In the most severe form of HI this glucose blindness causes frequent, random episodes of hypoglycemia.

HI causes a particularly damaging form of hypoglycemia because it denies the brain of all the fuels on which it is critically dependent. These fuels are glucose, ketones, and lactate. The usual protective measures against hypoglycemia, such as conversion of protein to glucose (called gluconeogenesis) and conversion of fat into ketones (called fatty acid oxidation and ketogenesis) are prevented by insulin. Once the brain cells are deprived of these important fuels, they cannot make the energy they need to work and so they stop working. The lack of appropriate fuel to the brain may result in seizures and coma and if prolonged may result in death of the cells. It is this cell damage which can manifest as a permanent seizure disorder, learning disabilities, cerebral palsy, blindness or even death.

Congenital Hyperinsulinism Resources

NORD Member Organizations:

(To become a member of NORD, an organization must meet established criteria and be approved by the NORD Board of Directors. If you're interested in becoming a member, please contact Susan Olivo, Membership Manager, at

The information in NORD’s Rare Disease Database is for educational purposes only. It should never be used for diagnostic or treatment purposes. If you have questions regarding a medical condition, always seek the advice of your physician or other qualified health professional. NORD’s reports provide a brief overview of rare diseases. For more specific information, we encourage you to contact your personal physician or the agencies listed as “Resources” on this report.

0-9 - A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

NORD's Rare Disease Information Database is copyrighted and may not be published without the written consent of NORD.

Copyright ©2015 NORD - National Organization for Rare Disorders, Inc. All rights reserved.
The following trademarks/registered service marks are owned by NORD: NORD, National Organization for Rare Disorders, the NORD logo, RareConnect. .