55 Kenosia Avenue
Danbury, CT 06810
Phone: 203.744.0100
Toll Free: 1.800.999.6673
http://rarediseases.org

Treacher Collins Syndrome

The information in NORD’s Rare Disease Database is for educational purposes only. It should never be used for diagnostic or treatment purposes. If you have questions regarding a medical condition, always seek the advice of your physician or other qualified health professional. NORD’s reports provide a brief overview of rare diseases. For more specific information, we encourage you to contact your personal physician or the agencies listed as “Resources” on this report.

Copyright 1989, 1990, 1992, 1996, 1998, 1999, 2000, 2007, 2013

NORD is very grateful to Joseph Lee, NORD Editorial Intern from the University of Notre Dame, Dr. Paul Trainor, Stowers Institute for Medical Research, Dr. Pedro A. Sanchez-Lara, Children's Hospital Los Angeles, Dr. Michael Dixon, Univ. of Manchester, UK, and Ethylin Wang Jabs, MD, Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, for assistance in the preparation of this report.

Synonyms of Treacher Collins Syndrome

Disorder Subdivisions

General Discussion

Summary
Treacher Collins syndrome (TCS) is a rare genetic disorder characterized by distinctive abnormalities of the head and face area resulting from underdevelopment (hypoplasia) of certain facial structures including the jaw, cheekbones and nearby structures (zygomatic complex). Craniofacial abnormalities tend to involve the cheekbones, jaws, mouth, ears, and/or eyes. In addition to the various facial abnormalities, affected individuals may have malformations of the external ears and middle ear structures and eye (ocular) abnormalities including an abnormal downward slant to the opening between the upper and lower eyelids (palpebral fissures). Affected individuals may develop hearing loss and breathing (respiratory) difficulties. Furthermore, brain and behavioral anomalies such as microcephaly and psychomotor delay have also been occasionally reported as part of the condition. The specific symptoms and physical characteristics associated with TCS can vary greatly from one individual to another. Some individuals may have mild symptoms and go undiagnosed, while others may develop serious, life-threatening respiratory complications. TCS is caused by a mutation in the TCOF1, POLR1C or POLR1D genes. In the case of TCOF1 or POLR1D, the mode of inheritance is autosomal dominant, while in the case of POLR1C it is autosomal recessive.

Introduction
TCS is named after Edward Treacher Collins, a London ophthalmologist who first described the disorder in the medical literature in 1900. TCS is also known as mandibulofacial dysostosis or Treacher Collins-Franceschetti syndrome.

Symptoms

The symptoms and severity of TCS can vary dramatically from one person to another, even among members of the same family. Some individuals may have a very mild form that can go undiagnosed; others may have significant abnormalities and the potential for life-threatening respiratory complications. It is important to note that affected individuals will not have all of the symptoms discussed below.

The major features of TCS affect certain bones of the face, ears and soft tissues around the eyes. Affected individuals develop distinctive facial features and potentially hearing and vision problems. The abnormalities of TCS are typically symmetric (almost identical on both sides of the face). Symptoms are present at birth (congenital). In some cases, severe respiratory complications can develop. Intelligence is usually unaffected but brain and behavioral anomalies such as microcephaly and cognitive delay have been reported infrequently as part of the condition. Speech and language development can be compromised by hearing loss, cleft palate or jaw and airway problems.

Infants with TCS exhibit underdeveloped (hypoplastic) or absent cheekbones (malars), causing this area of the face to appear flat or sunken. The bone of the lower jaw (mandible) is incompletely developed (mandibular hypoplasia), causing the chin and the lower jaw to appear abnormally small (micrognathia). Certain bony structures (e.g., coronoid and condyloid processes) that anchor portions of the lower jaw bone to muscle can be unusually flat or absent. Affected infants may also exhibit underdevelopment of the throat (pharyngeal hypoplasia). Pharyngeal hypoplasia with underdevelopment of the lower jaw (mandibular hypoplasia) and/or abnormal smallness of the jaw (micrognathia) may contribute to feeding problems and/or breathing difficulties (respiratory insufficiency) during early infancy. Children may experience obstructive sleep apnea which is characterized by repeated short interruptions of normal breathing and air movement during sleep. In some severely-affected individuals, life-threatening respiratory difficulties may develop. (For more information on this condition, choose "Infantile Apnea" as your search term in the Rare Disease Database.)

Additional abnormalities can contribute to respiratory or feeding difficulties including narrowing or obstruction of the nasal airways (choanal stenosis or atresia). Some children may be described as having features of "Robin Sequence" which include severe micrognathia, a tongue that is displaced farther back in the mouth than normal (glossoptosis) with or without incomplete closure of the roof of the mouth (cleft palate). In addition, malformations of the mouth and the jaw may result in dental abnormalities, such as teeth that are underdeveloped (hypoplastic) and/or misaligned (malocclusion). Additional dental abnormalities have also been reported including missing teeth (tooth agenesis), clouding or discoloration of the enamel of teeth (enamel opacity), and improper (ectopic) eruption of certain upper teeth (maxillary molars).

Individuals with TCS may develop hearing loss due to failure of sound waves to be conducted through the middle ear (conductive hearing loss). Conductive hearing loss usually results from abnormalities affecting structures within the middle ear. Affected infants may also have malformed or absent ossicles, the three small bones through which sound waves are transmitted in the middle ear (i.e., incus, malleus, and stapes).

Most affected infants have abnormalities of external ear structures as well. Affected infants may have absent, small or malformed ears (microtia), with narrowing (stenosis) or blockage (atresia) of the external ear canals. The outer ears may be crumpled or rotated. Structures of the inner ear are usually unaffected, although malformation of the bony spiral organ in the inner ear (cochlea) and the structures within the inner ear that play a role in balance (vestibular apparatus) have been reported. Additional symptoms may include the presence of small growths of skin or pits just in front of the external ear (preauricular tags) and an abnormal passage that is closed on one end (blind fistula) that normally drains the ears to the nose.

Many infants with TCS have abnormalities of the tissue surrounding the eyes. These eye differences can give affected individuals a saddened facial appearance. The most common ocular symptom is a downward slant to the opening between the upper and lower eyelids (palpebral fissures). Additional symptoms include a lower eyelid notch or cleft of missing lid tissue (lid coloboma), partial absence of eyelashes on the lower eyelid, crossed eyes (strabismus) and narrowed tear ducts (dacrostenosis). Occasionally malformations of the globe are seen and can include notch or cleft of missing tissue of the iris or abnormally small eyes (microphthalmia). Vision loss may occur in some cases. The degree of visual impairment varies depending upon the severity and combination of ocular abnormalities. Lower eyelid abnormalities can cause the eyes to dry out, which increases the risk of chronic irritation and eye infections.

Some individuals with TCS exhibit additional physical abnormalities such as an widely spaced eyes, notching of the upper eyelid, nasal deformity, an abnormally wide mouth (macrostomia), a highly-arched roof of the mouth (palate), unusual growth of the scalp hair toward the cheeks, and/or congenital heart defect.

Approximately 5% of individuals with TCS display development deficits or neurological problems such as psychomotor delay. However, intelligence is generally unaffected with normal language development. Nonetheless, issues with speech development can occur because of hearing loss, cleft palate or difficulties producing sounds because of structural distortion.

Causes

TCS is caused by mutation of the TCOF1, POLR1C or POLR1D genes. In the case of TCOF1 or POLR1D, the mode of inheritance is autosomal dominant, while in the case of POLR1C it is autosomal recessive.

Genetic diseases are determined by the combination of genes for a particular trait that are on the chromosomes received from the father and the mother. Dominant genetic disorders occur when only a single copy of an abnormal gene is necessary for the appearance of the disease. For TCOF1 and POLR1D, an abnormal gene can be inherited from either parent, or can be the result of a new mutation (gene change) in the affected individual. In approximately 60% of TCS cases, the mutation is a new mutation that occurs randomly without a previous family history of the disorder (de novo mutation). However, a parent may be mildly affected and unaware that they have the disorder. The risk of passing the abnormal gene from affected parent to offspring is 50% for each pregnancy regardless of the sex of the resulting child or whether previous pregnancies have resulted in affected, or indeed unaffected, children. .

Recessive genetic disorders (e.g. TCS caused by POLR1C mutations) occur when an individual inherits the same abnormal gene for the same trait from each parent. If an individual receives one normal gene and one gene for the disease, the person will be a carrier for the disease, but usually will not show symptoms. The risk for two carrier parents to both pass the defective gene and, therefore, have an affected child is 25% with each pregnancy. The risk to have a child who is a carrier like the parents is 50% with each pregnancy. The chance for a child to receive normal genes from both parents and be genetically unaffected for that particular trait is 25%.

Investigators have determined that the mutations of the treacle (TCOF1) gene, located on the long arm of chromosome 5 (5q32), cause most cases of TCS. Chromosomes, which are present in the nucleus of human cells, carry the genetic information for each individual. Human body cells normally have 46 chromosomes. Pairs of human chromosomes are numbered from 1 through 22 and the sex chromosomes are designated X and Y. Males have one X and one Y chromosome and females have two X chromosomes. Each chromosome has a short arm designated "p" and a long arm designated "q". Chromosomes are further sub-divided into many bands that are numbered. For example, "chromosome 5q32" refers to band 32 on the long arm of chromosome 5. The numbered bands specify the location of the thousands of genes that are present on each chromosome.

TCOF1 carries instructions to create (encode) a protein known as treacle. The exact role that treacle plays in the development of TCS is not fully understood. Researchers have determined that treacle plays a role in the creation of certain small structures found within cells that assemble proteins (ribosomes). Conditions that arise from defects in the formation (biogenesis) of ribosomes are termed ribosomopathies. POLR1C and POLR1D encode subunits of RNA polymerases I and III, which are also essential for ribosome biogenesis. It seems likely that mutations in POLR1C and POLR1D cause insufficient protein assembly and do not allow cells to meet their proliferation and growth needs during the development of the embryo. Because TCS is highly variable, researchers speculate that additional genetic and possibly environmental factors may also play a role in the variable severity of the disorder.

Some individuals with the features and physical findings of TCS do not have mutations in any of three abovementioned genes, suggesting that additional as yet unidentified genes may also cause TCS in some cases.

Affected Populations

TCS affects males and females in equal numbers. The prevalence is estimated to be between 1 in 10,000-50,000 individuals in the general population. Some mildly affected individuals may go undiagnosed, making it difficult to determine the disorder’s true frequency in the general population.

Related Disorders

Symptoms of the following disorders can be similar to those of TCS. Comparisons may be useful for a differential diagnosis.

Nager syndrome (also known as acrofacial dysostosis, Treacher Collins type with limb anomalies) is a rare inherited disorder characterized by craniofacial malformations similar to those in TCS occurring in association with abnormalities of the arms, hands, and/or feet. Craniofacial malformations include underdevelopment of the cheekbones (malar hypoplasia); incomplete development of the lower jaw (mandibular hypoplasia), causing the jaw to appear abnormally small (micrognathia); hypoplastic and/or malformed (dysplastic) external ears (pinnae) and blind ending or absent external ear canals (microtia), resulting in hearing impairment (conductive hearing loss); and/or downwardly slanted palpebral fissures, lack or absence of the lower eyelashes, and/or drooping upper eyelids (ptosis). Limb abnormalities include underdevelopment or absence of the thumbs, absence of one of the bones in the forearms (radius), abnormal fusion of bones in the forearms (radioulnar synostotis), permanent flexion of certain fingers (camptodactyly), and/or webbing of the toes (syndactyly). Nager Syndrome is typically inherited as an autosomal dominant trait cause by heterozygous mutation in the SF3B4 gene on chromosome 1q12-q21. In most cases, Nager syndrome appears to occur randomly and newly in the family (sporadic) yet autosomal recessive inheritance has been previously described. (For more information on this disorder, choose "Nager" as your search term in the Rare Disease Database.)

Miller syndrome (also known as postaxial acrofacial dysostosis) is a rare inherited disorder characterized by craniofacial malformations occurring in association with abnormalities of the arms, hands, and/or feet. Craniofacial malformations include underdevelopment of the cheekbones (malar hypoplasia); an abnormally small lower jaw (micrognathia); incomplete closure of the roof of the mouth (cleft palate); small, protruding, "cup-shaped" ears; and/or absence of tissue (colobomas) from the lower eyelids. Limb abnormalities may include incomplete development (hypoplasia), webbing (syndactyly), and/or absence of certain fingers and/or toes; improper positioning of certain toes; and/or improper development and/or abnormal fusion of bones in the forearms (radioulnar synostosis), causing the forearms to appear unusually short. Additional physical abnormalities can occur in some cases. Miller syndrome is inherited as an autosomal recessive trait caused by compound heterozygous mutations in the DHODH gene on chromosome 16q22.2. (For more information on this disorder, choose "Miller" as your search term in the Rare Disease Database.)

Hemifacial microsomia is a rare disorder characterized by craniofacial abnormalities involving the jaws, mouth, and ears in addition to extra cranial anomalies of the cardiac, skeletal, renal systems, and extremities (HFM with expanded spectrum). Many researchers consider Goldenhar syndrome a variant and subgroup of hemifacial microsomia. In the medical literature, hemifacial microsomia and Goldenhar syndrome are often grouped together under the term "Oculoauriculovertebral (OAV) Spectrum" or "craniofacial microsomia". Most cases occur randomly, with no apparent cause (sporadic). In other cases, there has been a positive family history that, according to some researchers, appears to suggest autosomal dominant inheritance. The physical features associated with craniofacial microsomia vary dramatically from case to case. Such features tend to involve one side of the body (unilateral) and may represent varying combinations of certain abnormalities. These include underdevelopment of the cheekbones, the upper jaw, and the lower jaw (malar, maxillary, and mandibular hypoplasia); underdevelopment of certain muscles in the face; abnormalities of the tongue, incomplete closure of the roof of the mouth (cleft palate), and/or an abnormal groove in the lip (cleft lip); malformed external ears (pinnae) with blind ending or absent external ear canals (microtia), resulting in hearing impairment (conductive hearing loss); abnormal outgrowths of skin on the ears (skin tags); and/or incomplete development of certain bones in the spinal column (vertebral hypoplasia). Additional abnormalities include partial or total absence of tissue (coloboma) from the upper eyelids, crossed eyes (strabismus), and/or abnormally small eyes (microphthalmia); heart (cardiac) defects; kidney (renal) abnormalities; and/or additional physical abnormalities. The two key features differentiating TCS from OAV Spectrum are: 1) TCS is symmetrical; and 2) TCS does not affect the nerves. (For more information on this disorder, choose "OAV Spectrum" as your search term in the Rare Disease Database.)

Standard Therapies

Diagnosis
A diagnosis of TCS is made based upon a thorough clinical evaluation, a detailed patient history and identification of characteristic physical findings. Many associated abnormalities such as malformation or absence of the external ear are present at birth (congenital).

Clinical Testing and Work-Up
Specialized x-ray studies will confirm the presence and/or extent of certain observed craniofacial abnormalities. For example, such imaging tests show the abnormal smallness of the jaw (micrognathia) due to underdevelopment of the lower jaw bone (mandibular hypoplasia), the presence and/or extent of hypoplasia affecting certain parts of the skull, and/or the presence of additional malformations of the ear that cannot be seen during clinical evaluation.

TCS can be detected before birth (prenatally) by amniocentesis and chorionic villus sampling if a TCOF1, POLR1C, or POLR1D mutation has been identified in an affected family member. In certain cases, fetal ultrasonography, which uses reflected sound waves to create an image of the developing fetus, can reveal characteristic findings suggestive of TCS.

In addition, in those affected individuals who exhibit few signs, a thorough clinical examination and x-ray imaging tests of the craniofacial area can demonstrate the subtle expression of certain characteristic features (e.g., hypoplasia of zygomatic arches) associated with TCS. Because TCS shares several physical features that may occur in other craniofacial syndromes, many researchers suggest that stronger diagnostic confirmation be made through molecular genetic testing and/or, in some cases, a careful, detailed family history.

Molecular genetic testing to confirm a diagnosis is available through commercial and academic research laboratories to detect mutations in the TCOF1, POLR1C and POLR1D genes. Approximately 90-95% of individuals have an identifiable mutation of the TCOF1 gene.

Relatives, especially parents and siblings, of an individual diagnosed with TCS should be carefully examined because mild cases often go unrecognized and undiagnosed.

Treatment
There is no cure for TCS. Treatment is directed toward the specific symptoms that are apparent in each individual. Treatment may require the coordinated efforts of a team of specialists. Pediatricians, pediatric ear, nose and throat specialists (pediatric otolaryngologists), pediatric dentist, pediatric nurse, plastic surgeon, speech pathologists, audiologists, ophthalmologists, psychologists, geneticists, and other healthcare professionals may need to systematically and comprehensively plan an affect child's treatment.

Early Detection
Physicians regularly monitor individuals with TCS to detect certain abnormalities that may be associated with the disorder. For example, an affected individual's hearing should be carefully monitored to detect any onset of hearing loss. Assessment of an infant’s hearing is critical. A full assessment should be done early during life, even before one year of age and then yearly, in order to ensure proper speech development.

An instrument (ophthalmoscope) is used to visualize the interior of the eye to detect any possibility of visual impairment. This examination is important to ensure appropriate preventive steps and/or prompt treatment for those who exhibit abnormalities of the eyes in association with TCS (e.g., colobomas, strabismus, microphthalmia). Affected individuals should also be monitored for jaw and dental abnormalities.

Early intervention is important to ensure that affected children reach their potential. Special services that may be beneficial may include speech therapy, special social support, and other medical, social, and/or vocational services. Genetic counseling will be of benefit for affected individuals and their families.

Surgery
In some cases, surgical reconstruction of craniofacial malformations may be necessary. Surgery may be performed to repair cleft palate, to reconstruct the jaw, or to repair other bones in the skull (e.g., malar bones, zygomatic complex). The specific surgical procedures used and the age when surgery is performed depends upon the severity of the malformations, overall health and personal preference.

For example, different abnormalities may be treated at different ages. Cleft palate is often corrected around 1-2 years of age. Zygomatic and orbital reconstruction usually occurs around 5-7 years of age. External and inner ear reconstruction usually occurs around 6 years of age. Jawbone lengthening or reconstruction can range from newborn to teenager years depending upon the extent and severity of the condition.

Obstructive airways can be a serious problem not always obvious to parents or clinicians. A sleep or nap study may be used to help determine the severity of the obstruction and may influence the treatment plan. In severe cases, a tube may be surgically inserted into the windpipe (trachea) to maintain an effective airway, a procedure called a tracheostomy. A procedure known as mandibular distraction, which is used to increase the length of the jawbone, may be necessary. A tube may be surgically implanted into the stomach to assure that affected infants experiencing feeding difficulties receive a sufficient amount of calories (gastrostomy).

Multiple surgeries may be required to treat the various craniofacial abnormalities that are potentially associated with TCS. Despite the number of surgeries, results vary from one person to another and the end result is rarely fully corrective.

In some individuals, an operation may be performed to help correct middle ear malformations and associated conductive hearing loss. However, specialized hearing aids such as bone-anchored hearing aids (BAHA) may suffice rather than surgery in most cases. Bone-anchored hearing aids transmit sound directly through bone into the inner ear, bypassing the external ear canal and the middle ear (both of which are often affected in individuals with TCS. Reconstructive surgery may be performed to help correct outer ear malformations for functional and cosmetic reasons. Generally, reconstruction of the external ear should be performed first.

Additional Therapies
In individuals with TCS who exhibit eye abnormalities and associated visual impairment, corrective glasses, contact lenses, surgery, and/or other supportive techniques may be used to help improve vision in some cases. Artificial teeth (dentures), dental implants, braces, dental surgery, and/or other corrective procedures may be used to correct dental abnormalities.

Anesthesia Considerations
Structural airway problems associated with TCS can make it difficult for anesthesiologists to manage and maintain an airway during surgery. Proper evaluation including a comprehensive preoperative assessment and complete clinical history should be performed to best plan an anesthetic strategy.

Investigational Therapies

Researchers are exploring ways to inhibit a protein known as p53. This protein helps the body to kill off unwanted cells. In individuals with TCS, p53 is abnormally activated, leading to the loss of cranial neural crest cells and ultimately the craniofacial symptoms of TCS. Methods to inhibit the production of p53 or to block the mechanisms that lead to p53 activation may an effective treatment avenue for affected individuals. More research is necessary to determine the long-term safety and effectiveness of such medications and what role they may play in the treatment of individuals with TCS.

Some researchers are studying the use of stems cells found in fat tissue (adipose-derived stem cells) as an adjunct therapy to surgery in individuals with craniofacial disorders such as TCS. Initial results have shown that surgical outcomes may be improved using these stem cells to help stimulate regrowth of the affected areas. However, this therapy is experimental and controversial, and requires more research to determine its viability as a potential therapy.

Information on current clinical trials is posted on the Internet at www.clinicaltrials.gov. All studies receiving U.S. government funding, and some supported by private industry, are posted on this government web site.

For information about clinical trials being conducted at the NIH Clinical Center in Bethesda, MD, contact the NIH Patient Recruitment Office:

Toll-free: (800) 411-1222
TTY: (866) 411-1010
Email: prpl@cc.nih.gov

For information about clinical trials sponsored by private sources, contact:
www.centerwatch.com

Treacher Collins Syndrome Resources

NORD Member Organizations:

(To become a member of NORD, an organization must meet established criteria and be approved by the NORD Board of Directors. If you're interested in becoming a member, please contact Susan Olivo, Membership Manager, at solivo@rarediseases.org.)

Other Organizations:

References

TEXTBOOKS
Wulfsburgh EA. Treacher Collins Syndrome. In: NORD Guide to Rare Disorders. Lippincott Williams & Wilkins. Philadelphia, PA. 2003:262-3.

Hennekam RCM, Krantz ID, Allanson JE. Eds. Gorlin’s Syndromes of the Head and Neck. 5th ed. Oxford University Press, New York, NY; 2010:889-892.

JOURNAL ARTTICLES
Schlump JU, Stein A, Hehr U, et al. Treacher-Collins syndrome: clinical implications for the paediatrician-a new mutation in a severely affected newborn and comparison with three further patients with the same mutation, and review of the literature. Eur J Pediatr. 2012;171:1611-1688. http://www.ncbi.nlm.nih.gov/pubmed/22729243

Marra KG, Rubin JP. The potential of adipose-derived stem cells in craniofacial repair and regeneration. Birth Defects Res C Embryo Today. 2012;96:95-97. http://www.ncbi.nlm.nih.gov/pubmed/22457180

Plomp RG, Bredero-Boelhouwer HH, Joosten KF, et al. Obstructive sleep apnoea in Treacher Collins syndrome: prevalence, severity and cause. Int J Oral Maxillofac Surg. 2012;41:696-701. http://www.ncbi.nlm.nih.gov/pubmed/22521672

Conte C, D’Apice MR, Rinaldi F, et al. Novel mutations of TCOF1 gene in European patients with Treacher Collins syndrome. BMC Med Genet. 2011;12:125. http://www.ncbi.nlm.nih.gov/pubmed/21951868

Dauwerse JG, Dixon J, Seland S, et al. Mutations in genes encoding subunits of RNA polymerases I and III cause Treacher Collins syndrome. Nat Genet. 2011;43:20-22. http://www.ncbi.nlm.nih.gov/pubmed/21131976

Trainor PA, Dixon J, Dixon MJ. Treacher Collins syndrome: etiology, pathogenesis and prevention. Eur J Hum Genet. 2009;17:275-283. http://www.ncbi.nlm.nih.gov/pubmed/19107148

Jones NC, Lynn ML, Gaudenz K, et al. Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function. 2008;14:125-133. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3093709/

Dixon J, Jones NC, Sandell LL, et al., TCOF1/Treacle is required for neural crest cell formation and proliferation deficiencies that cause craniofacial abnormalities. Proc Natl Acad Sci. 2006;103:13403-8. http://www.ncbi.nlm.nih.gov/pubmed/16938878

Kobus K, Wojcicki P. Surgical treatment of Treacher Collins syndrome. Ann Plast Surg. 2006;56:549-54. http://www.ncbi.nlm.nih.gov/pubmed/16641634

Teber OA, Gillessen-Kaesbach G, Fischer S, et al., Genotyping in 46 patients with tentative diagnosis of Treacher Collins syndrome revealed unexpected phenotypic variation. Eur J Med Genet. 2004;12:879-90. http://www.ncbi.nlm.nih.gov/pubmed/15340364

Marszalk B Wojcicki P, Kobus K, Trzeciak WH. Clinical features, treatment and genetic background of Treacher Collins syndrome. J Appl Genet. 2004;43:223-33.
http://www.ncbi.nlm.nih.gov/pubmed/12080178

Dixon J, Ellis I, Bottani A, Temple K, Dixon MJ. Identification of mutations in TCOF1: use of molecular analysis in the pre- and postnatal diagnosis of Treacher Collins syndrome. Am J Med Genet A. 2004;127:244-8. http://www.ncbi.nlm.nih.gov/pubmed/15150774

Toriello HV. Treacher Collins syndrome. Ear Nose Throat J. 1999;78:752. http://www.ncbi.nlm.nih.gov/pubmed/10544531

Marsh KL, Dixon J, Dixon MJ. Mutations in the Treacher Collins syndrome gene lead to mislocalization of the nucleolar protein treacle. Hum Mol Genet. 1998;112:1795-800.
http://hmg.oxfordjournals.org/content/7/11/1795.short

Dixon MJ. Treacher Collins syndrome: from linkage to prenatal testing. J Laryngol Otol. 1998;112:705-09. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1050672/

Dixon J, Edwards SE, Gladwin AJ, et al. The Treacher Collins Syndrome Collaborative Group. Positional cloning of a gene involved in the pathogenesis of Treacher Collins syndrome. Nat Genet. 1996;12:130-36. http://www.nature.com/ng/journal/v12/n2/abs/ng0296-130.html

FROM THE INTERNET
Trainor PA, Sanchez-Lara PA, Dixon M. The Physician’s Guide to Treacher Collins Syndrome. The National Organization for Rare Disorders. 2012. Available at: http://nordphysicianguides.org/wp-content/uploads/2012/02/Treacher_booklet_web.pdf
Accessed On: November 4, 2012.

Katsanis SH, Cutting GR. Updated:08/30/2012. Treacher Collins Syndrome. In: GeneReviews at GeneTests: Medical Genetics Information Resource (database online). Copyright, University of Washington, Seattle. 1997-2003. Available at http://www.genetests.org.

McKusick VA., ed. Online Mendelian Inheritance in Man (OMIM). Baltimore. MD: The Johns Hopkins University; Entry No:154500; Last Update:05/05/2005. Available at: http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=154500 Accessed on: June 19, 2007.

Report last updated: 2013/05/24 00:00:00 GMT+0