You are here: Home / Rare Disease Information / Rare Disease Database

Search Rare Diseases

Enter a disease name or synonym to search NORD's database of reports.

0-9 - A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

Smith Magenis Syndrome

NORD is very grateful to Ann C.M. Smith, M.A., D.Sc.(Hon), Sr. Genetic Counselor/Contractor, SMS Research Studies, Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, for assistance in the preparation of this report.

Synonyms of Smith Magenis Syndrome

  • chromosome 17, interstitial deletion 17p
  • Chromosome 17p11.2 deletion syndrome
  • SMCR
  • Smith-Magenis chromosome region
  • SMS

Disorder Subdivisions

  • No subdivisions found.

General Discussion

Summary
Smith-Magenis syndrome (SMS) is a complex developmental disorder that affects multiple organ systems of the body. The disorder is characterized by a pattern of abnormalities that are present at birth (congenital) as well as behavioral and cognitive problems. Common symptoms include distinctive facial features, skeletal malformations, varying degrees of intellectual disability, speech and motor delays, sleep disturbances, and self-injurious or attention-seeking behaviors. The specific symptoms present in each case can vary dramatically from one individual to another. Approximately 90% of cases are caused when a portion of chromosome is missing or deleted (monosomic). This deleted portion within chromosome 17p11.2 includes the RAI1 gene, which is believed to play a major role in the development of the disorder. Other genes within the deleted segment may also play a role in variable features in the syndrome, but it is not fully understood how significant a role they play in the development of SMS. In the remaining cases, there is no deleted material on chromosome 17; these cases are caused by mutations in the RAI1 gene.

Introduction
Smith-Magenis syndrome was first reported in the medical literature in 1982 by Ann Smith, a genetic counselor, and colleagues. In 1986, Smith and Dr. R. Ellen Magenis identified nine patients with the disorder further delineating the syndrome. Since that time numerous additional cases have been identified allowing physicians/clinicians to develop a better understanding about this complex disorder.

Symptoms

Smith-Magenis syndrome is a highly variable disorder. The specific symptoms present and the overall severity of the disorder can vary from one person to another. It is important to understand that affected individuals will not have all of the symptoms discussed below and that every individual case is unique. Parents should talk to the physician and medical team about their child’s specific case, associated symptoms and overall prognosis.

Many individuals with SMS have distinctive facial features including a broad, square-shaped facial appearance, a prominent forehead, deep-set eyes that are farther apart than usual (hypertelorism), an upslanting palpebral (eye) fissures, a broad bridge of the nose, hair growth between the eyebrows so it appears as one long eyebrow (synophrys), a down-turned (everted; cupid bow) upper lip, a short, full-tipped nose, and underdevelopment of the middle portion of the face (midface retrusion). The head may appear disproportionately short (brachycephaly). Some affected infants may have an abnormally small jaw (micrognathia) and the facial appearance is more "cherubic" with rosy cheeks. As affected individuals age, micrognathia may change so that the lower jaw abnormally protrudes outward (relative prognathia). In general, the distinctive facial features associated with SMS progress with age. Affected individuals may also exhibit absence (agenesis) of secondary (permanent) teeth, particularly premolars, and taurodauntism, a condition characterized by enlargement of the pulp chambers and reduction of the roots of teeth; open bite posture with large tongue (macroglossia) and history of bruxism (teeth grinding) are also common.

Infants may have diminished muscle tone (hypotonia), poor reflexes (hyporeflexia), and feeding difficulties such as poor sucking ability, which can contribute to failure to thrive. Failure to thrive is defined as the failure to grow and gain weight at a rate that would be expected based upon age and gender. Infants are generally quiet and complacent with infrequent crying and diminished vocalizations reflecting the marked early expressive speech delay. In addition, affected infants may nap for prolonged periods of time and exhibit generalized daytime lethargy. Gastroesophageal reflux is also common during infancy.

Individuals with SMS have varying degrees of cognitive ability. Many individuals exhibit mild to moderate intellectual disability. Affected individuals often exhibit delays in attaining speech and motor skills and in reaching developmental milestones (developmental delays).

Specific behavioral problems (maladaptive behaviors) occur in children with SMS. A common initial sign is head banging during early childhood. Frequent upper body squeezes often described as "self-hugging" is also common. Affected children may also display impulsivity, hyperactivity and attention deficient disorder, frequent and prolonged tantrums, sudden mood changes, toilet training difficulties, disobedience, and aggressive or attention-seeking behaviors. In addition to head banging, affected children may develop other self-injurious behavior such as hand biting, face slapping, skin picking, and wrist biting. Repeated head banging can potentially cause detachment of the retina, which although a concern, is not a high risk. Older children may yank at fingernails and toenails (onychotillomania) or insert objects into body orifices (polyembolokoilamania). Affected children tend to be excitable and easily distracted. Although behavioral issues are common, many individuals tend to have endearing and engaging personalities, with great senses of humor, and facile long-term memory for faces, places and things.

Affected children may experience chronic ear infections, including repeated middle ear infections (otitis media). Conductive hearing loss may develop. Conductive hearing loss develops when sound waves are inappropriately conducted through the external or middle ear to the inner ear, resulting in decreased sensitivity to sound. Conversely, in some cases, affected children may be abnormally sensitive to certain sounds or frequencies (hyperacusis). Frequent sinus infections (sinusitis) are also common. Eye abnormalities such as progressive nearsightedness (myopia), crossed eyes (strabismus), and unusually smallness of the cornea (microcornea) may also occur.

Affected children often have abnormalities affecting the larynx (voice box) or surrounding tissue. Laryngeal abnormalities include the formation of polyps and nodules or swelling due to fluid retention (edema). Paralysis of the vocal cords has also developed. Affected children may experience velopharyngeal insufficiency, in which the soft palate of the mouth does not close properly during speech. Oral sensorimotor dysfunction, in which affected individuals have difficulties controlling the lips, tongue and jaw muscles, may also develop and can cause tongue protrusion and frequent drooling. Due to such abnormalities, children may develop a hoarse, deep voice. These abnormalities also contribute to delays in speech development.

Excessive weight gain and obesity may be seen in adolescence and approximately 90% of children may be overweight or obese by the age of 14. Affected individuals may exhibit short stature during childhood, although height is typically within the normal range as adults. Approximately 50% of children may have unusually high levels of cholesterol in the blood (hypercholesterolemia). Chronic constipation is also a frequent complication.

The sleep disturbance that occurs in affected individuals is a chronic lifelong problem. In addition to sleep issues during infancy (generalized lethargy & "too sleepy"), affected individuals develop significant sleep disturbances from early childhood that continue into adolescence and adulthood. The sleep cycle is characterized by problems that can include difficulty falling asleep, shortened sleep cycles, an inability to enter REM sleep and frequently awaking during the night or early in the morning. In general, the hours of sleep are less than expected for age. As a consequence of the disrupted nighttime sleep cycle affected individuals may exhibit periods of drowsiness during the day, known as excessive daytime sleepiness or sleep debt, which remains a chronic issue. The sleep abnormalities are associated with an inverted circadian rhythm of melatonin, reported in over 90% of studied cases. A circadian rhythm sleep disorder occurs when a person’s biological clocks fails to synchronize to a normal 24-hour day. Specifically, melatonin, a normal occurring hormone, rises and falls; it rises, peaking at night and causes drowsiness. Melatonin levels lessen in the morning, reaching their lowest levels during the middle of the day. In individuals with an inverted circadian rhythm, the rising and falling of melatonin levels is reversed (daytime highs).

Skeletal malformations are common in individuals with SMS and can include front-to-back curvature of the spine (lordosis), mild-to-moderate sideways curvature of the spine (scoliosis), abnormally small hands and feet, and markedly flat or highly arched feet that can cause an unusually manner of walking (abnormal gait). In rare cases, affected children have vertebral anomalies and forearm and elbow limitations.

Less often, other symptoms or physical findings have occurred in individuals with SMS including immune system dysfunction, thyroid function abnormalities (hypothyroidism), heart (cardiac) defects, kidney (renal) and/or urinary tract malformations, cleft lip and cleft palate, and seizures. Seizure activity can occur subtly so that seizure goes unnoticed (subclinical seizures). Peripheral neuropathy, which is a general term for any disorder of the peripheral nervous system, may also occur. Peripheral neuropathy encompasses any disorder that primarily affects the nerves outside the central nervous system (i.e. brain and spinal cord). Symptoms may include a decreased sensitivity to pain. Peripheral neuropathy is often associated with the loss of sensation or abnormal sensations such as tingling, burning, or pricking along the affected nerves, but it is unknown whether this occurs in individuals with SMS.

Causes

In approximately 90% of cases, a portion of the short arm (p) of chromosome 17 (17q11.2) is missing, which is referred to as deleted or monosomic. Chromosomes, which are present in the nucleus of human cells, carry the genetic information for each individual. Human body cells normally have 46 chromosomes. Pairs of human chromosomes are numbered from 1 through 22 and the sex chromosomes are designated X and Y. Males have one X and one Y chromosome and females have two X chromosomes. Each chromosome has a short arm designated "p" and a long arm designated "q". Chromosomes are further sub-divided into many bands that are numbered. For example, "chromosome 17p11.2" refers to band 11.2 on the short arm of chromosome 17. The numbered bands specify the location of the thousands of genes that are present on each chromosome.

In individuals with SMS, the deleted section of chromosome 17 includes the retinoic acid-induced 1 (RAI1) gene. Genes provide instructions for creating proteins that play a critical role in many functions of the body. When a gene is missing due to a monosomic chromosome abnormality, the protein product of that gene is absent. Depending upon the functions of the particular protein, this can affect many organ systems of the body, including the brain. The specific functions of the protein produced (encoded) by the RAI1 gene are not fully understood.

The exact cause of the chromosomal alteration in SMS is unknown. The medical literature has indicated that virtually all documented cases appear to be due to a spontaneous (de novo) genetic change that occurs for unknown reasons.

In rare cases, SMS is the result of an error during very early embryonic development due to a chromosomal balanced translocation in one of the parents. A translocation is balanced if pieces of two or more chromosomes break off and trade places, creating an altered but balanced set of chromosomes. If a chromosomal rearrangement is balanced, it is usually harmless to the carrier. However, they may be associated with a higher risk of abnormal chromosomal development in the carrier’s offspring. In these cases, the clinical features of children may be influenced by additional imbalances of other chromosomes than 17. Chromosomal testing can determine whether a parent has a balanced translocation. In parents with a child with SMS who have a normal chromosome analysis the risk of recurrence in a future pregnancy is below 1%.

The remaining 10% of cases of SMS are caused by mutations in the RAI1 gene. These mutations may occur randomly with no family history (i.e. new mutation) or be inherited in an autosomal dominant manner. Genetic diseases are determined by the combination of genes for a particular trait that are on the chromosomes received from the father and the mother. Dominant genetic disorders occur when only a single copy of an abnormal gene is necessary for the appearance of the disease. The abnormal gene can be inherited from either parent, or can be the result of a new mutation (gene change) in the affected individual. The risk of passing the abnormal gene from affected parent to offspring is 50% for each pregnancy regardless of the sex of the resulting child. Mutations in the RAI1 gene lead to insufficient levels of functional copies of the protein product normally produced by the gene.

In two families reported in the medical literature, SMS occurred because of germline mosaicism. In germline mosaicism, some of a parent’s reproductive (germ) cells carry the RAI1 gene mutation or chromosome 17p deletion, while other germ cells do not (mosaicism). In addition, the other cells of a parent also do not have either to these chromosomal abnormalities; consequently, the parents are unaffected. However, as a result, one or more of the parent’s children may inherit the germ cell with a chromosomal abnormality, leading to the development of SMS. Germline mosaicism is suspected when apparently unaffected parents have more than one child with the disorder. The likelihood of a parent passing on a mosaic germline chromosomal abnormality to a child depends upon the percentage of the parent’s germ cells that have the abnormality versus the percentage that do not. There is no test for germline mutation or chromosome abnormality prior to pregnancy. Testing during pregnancy may be available and is best discussed with a genetic specialist.

A child born to an individual with SMS is at a theoretical risk of 50% to inherit the deletion or RAI mutation that causes the disorder. However, no cases of an individual with SMS having a child have been reported in the medical literature and fertility in SMS in general is not fully understood.

Affected Populations

Smith-Magenis syndrome affects males and females in equal numbers. The incidence is estimated to be 1 in 15,000-25,000 people in the general population in the United States. However, cases may go undiagnosed or misdiagnosed, making it difficult to determine the true frequency of SMS in the general population. SMS has been reported throughout the world and in all ethnic groups.

Related Disorders

Symptoms of the following disorders can be similar to those of Smith-Magenis syndrome. Comparisons may be useful for a differential diagnosis.

There are many different chromosomal disorders that have signs and symptoms that are similar to those seen in SMS. Such disorders include Down syndrome, Williams syndrome, Prader-Willi syndrome, Angelman syndrome, Sotos syndrome, fragile X syndrome, chromosome 22q11.2 deletion syndrome, 9q34 deletion syndrome, 2q37 deletion syndrome, 2q23.1 deletion syndrome, and 1p36 deletion syndrome. Individuals with SMS often initially receive a psychiatric diagnosis including obsessive-compulsive disorder, pervasive developmental disorder, or attention deficit hyperactivity disorder. Some children with SMS are initially diagnosed with an autism spectrum disorder. (For more information on these disorders, choose the specific disorder name as your search term in the Rare Disease Database.)

Standard Therapies

Diagnosis
A diagnosis of Smith-Magenis syndrome is based upon identification of characteristic symptoms, a detailed patient and family history, a thorough clinical evaluation and a variety of specialized genetic tests. The diagnosis of SMS is confirmed when deletion 17p11.2 (cytogenetic analysis or microarray) or RAI1 gene mutation is identified.

Clinical Testing and Workup
A specific chromosomal study known as G-band analysis, which demonstrates missing (deleted) material on chromosome 17p, is often used to help obtain a diagnosis of SMS. Chromosomes may be obtained from a blood sample. During this test the chromosomes are stained so that they can be more easily seen and then are examined under a microscope where the missing segment of chromosome 17p can be detected (karyotyping). To determine the precise breakpoint, a more sensitive test known as fluorescent in situ hybridization (FISH) may be necessary. During a FISH exam, probes marked by a specific color of fluorescent dye are attached to a specific chromosome allowing researchers to better view that specific region of the chromosome.

A newer technique known as chromosomal microarray analysis may also be used. During this exam, a person’s DNA is compared to the DNA of a person without a chromosomal abnormality (‘control’ person). A chromosome abnormality is noted when a difference is found between the DNA samples. Chromosomal microarray analysis allows for the detection of very small changes or alterations.

Molecular genetic testing can confirm a diagnosis in individuals suspected of having SMS due to a gene mutation. Molecular genetic testing can detect mutations in the RAI1 gene known to cause SMS in specific cases, but is available only as a diagnostic service at specialized laboratories

Treatment
Treatment may require the coordinated efforts of a team of specialists. Pediatricians, surgeons, cardiologists, dental specialists, speech pathologists, audiologists, ophthalmologists, psychologists, and other healthcare professionals may need to systematically and comprehensively plan an affect child’s treatment. Genetic counseling is of benefit for affected individuals and their families. Psychosocial support for the entire family is essential as well.

Treatment is symptomatic and supportive. Early intervention is important in ensuring that affected children reach their highest potential. Services that may be beneficial include special remedial education, speech/language therapy, occupational therapy, and sensory integration therapy, in which certain sensory activities are undertaken in order to help regulate a child’s response to sensory stimuli. Additional medical, social and vocational services may be recommended when appropriate.

Certain medications may be used to treat behavioral problems such as attention deficit or hyperactivity. Specific medications have also been used to treat sleep disorders potentially associated with SMS. Melatonin supplementation, in order to normalize melatonin levels, taken at bedtime has shown benefit in anecdotal reports.

Feeding difficulties require identification and appropriate therapy. Additional treatment follows standard guidelines for the specific symptom. For example, anti-seizure medications (anti-convulsants) may be used to treat seizures.

Prognosis
Because of the highly variable nature of SMS, it is impossible to make generalizations about prognosis for individual cases. Some affected individuals have been able to become employed and even live semi-independently with support from family and friends. However, others require constant care and may need to live with family or in a residential facility. As stated above, parents should talk to the physician and medical team about their child’s specific case and overall prognosis.

Investigational Therapies

A registry has been established in the United States for Smith-Magenis syndrome. A registry is a special database that contains information about individuals with a specific disorder or group of conditions. The collection of data about rare disorders may enable researchers to increase the understanding of such disorders, expand the search for treatments, and accelerate clinical trials into specific treatment options. For more information, contact:

National Institutes of Health (NIH) SMS Research Registry and Tissue Bank
Ann CM Smith, MA, DSc (Hon)
Phone: 301.435.5475
Fax: 301.496.7184
Email: acmsmith@mail.nih.gov

Information on current clinical trials is posted on the Internet at www.clinicaltrials.gov. All studies receiving U.S. government funding, and some supported by private industry, are posted on this government web site.

For information about clinical trials being conducted at the NIH Clinical Center in Bethesda, MD, contact the NIH Patient Recruitment Office:

Toll-free: (800) 411-1222
TTY: (866) 411-1010
Email: prpl@cc.nih.gov

For information about clinical trials sponsored by private sources, in the main, contact:
www.centerwatch.com

For more information about clinical trials conducted in Europe, contact: https://www.clinicaltrialsregister.eu/

Organizations related to Smith Magenis Syndrome

References

TEXTBOOKS
Gropman AL, Smith ACM, Duncan W. Neurologic Aspects of the Smith-Magenis Syndrome. In: Cognitive and Behavioral Abnormalities of Pediatric Disease, Nass RD and Frank Y, editors. 2010 Oxford University Press, New York, NY. Pp. 231-243.

Smith ACM, Gropman A. Smith Magenis Syndrome. In: Management of Genetic Syndromes 3rd Edition.
Suzanne B. Cassidy, Judith E. Allanson (Editors). 2010 Wiley-Blackwell, Hoboken, NJ.

Smith ACM, Finucane B. Smith-Magenis Syndrome. In: NORD Guide to Rare Disorders. Lippincott Williams & Wilkins. Philadelphia, PA. 2003:254-255.

JOURNAL ARTICLES
Goh ES, Banwell B, Stavropoulos DJ, Shago M, Yoon G. Mosaic microdeletion of 17p11.2-p12 and duplication of 17q22-24 in a girl with Smith-Magenis phenotype and peripheral neuropathy. Am J Med Genet A. 2014;164:748-752. http://www.ncbi.nlm.nih.gov/pubmed/24357149

Williams SR, Zies D, Mullegama SV, et al. Smith-Magenis syndrome results in disruption of CLOCK gene transcription and reveals an integral role for RAI1 in the maintenance of circadian rhythmicity. Am J Hum Genet. 2012;90:941-949. http://www.ncbi.nlm.nih.gov/pubmed/22578325

Vieira GH, Rodriguez JD, Boy R, et al. Differential diagnosis of Smith-Magenis syndrome: 1p36 deletion syndrome. Am J Med Genet A. 2011;155A:988-992. http://www.ncbi.nlm.nih.gov/pubmed/21480478

Thierry V, Ciccone C, Blancato JK, et al. Molecular analysis of the retinoic acid induced 1 gene (RAI1) in patients with suspected Smith-Magenis syndrome without the 17p11.2 deletion. PLoS One. 2011;6:e22861. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152558/

Laje G, Bernert R, Morse R, Pao M, Smith, ACM. Pharmacological treatment of disruptive behavior in Smith-Magenis syndrome. Am J Med Genet Part C Semin Med Genet. 2010;154C:463-468. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3022344/

Elsea SH, Girirajan S. Smith-Magenis syndrome. Eur J Hum Genet. 2008;16:412-421. http://www.ncbi.nlm.nih.gov/pubmed/18231123

Gropman AL, Elsea S, Duncan WC Jr., Smith AC. New developments in Smith-Magenis syndrome (del 17p11.2). Curr Opin Neurol. 2007;20:125-134. http://www.ncbi.nlm.nih.gov/pubmed/17351481

Gropman A, Duncan W. Neurologic and developmental features of the Smith-Magenis syndrome (del 17p11.2). Pediatr Neurol. 2006;34:337-350. http://www.ncbi.nlm.nih.gov/pubmed/16647992

De Leersnyder H. Inverted rhythm of melatonin secretion in Smith-Magenis syndrome: from symptoms to treatment. Trends Endocrinol Metab. 2006;17:291-298. http://www.ncbi.nlm.nih.gov/pubmed/16890450

Girirajan S, Elsas LJ II, Devriendt K, Elsea S. RAI1 variations in Smith-Magenis syndrome patients without 17p11.2 deletions. J Med Genet. 2005;42:820-828. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1735950/

INTERNET
Smith ACM, Boyd KE, Elsea SH, et al. Smith-Magenis Syndrome. 2001 Oct 22 [Updated 2012 Jun 28]. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2014. Available from: http://www.ncbi.nlm.nih.gov/books/NBK1310/ Accessed July 15, 2014.

Elsea S, Giriajan S. Smith-Magenis Syndrome. Orphanet Encyclopedia, August 2011. Available at: http://www.orpha.net/ Accessed March 12, 2014.

McKusick VA., ed. Online Mendelian Inheritance in Man (OMIM). Baltimore. MD: The Johns Hopkins University; Entry No:182290; Last Update:10/04/2012. Available at: http://omim.org/entry/182290 Accessed March 12, 2014.

The information in NORD’s Rare Disease Database is for educational purposes only. It should never be used for diagnostic or treatment purposes. If you have questions regarding a medical condition, always seek the advice of your physician or other qualified health professional. NORD’s reports provide a brief overview of rare diseases. For more specific information, we encourage you to contact your personal physician or the agencies listed as “Resources” on this report.

Report last updated: 2014/08/13 00:00:00 GMT+0

0-9 - A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

NORD's Rare Disease Information Database is copyrighted and may not be published without the written consent of NORD.

 
Copyright ©2014 NORD - National Organization for Rare Disorders, Inc. All rights reserved.
The following trademarks/registered service marks are owned by NORD: NORD, National Organization for Rare Disorders, the NORD logo, RareConnect. .